Tethering of Nicotinamide Adenine Dinucleotide Inside Hollow Nanofibers for High-Yield Synthesis of Methanol from Carbon Dioxide Catalyzed by Coencapsulated Multienzymes
Ji, Xiaoyuan1; Su, Zhiguo1; Wang, Ping1,2,3; Ma, Guanghui1; Zhang, Songping1
刊名ACS NANO
2015-04-01
卷号9期号:4页码:4600-4610
关键词carbon dioxide bioconversion cofactor regeneration hollow nanofibers multienzyme system
ISSN号1936-0851
英文摘要

Enzymatic conversion of carbon dioxide (CO2) to fuel or chemicals is appealing, but is limited by lack of efficient technology for regeneration and reuse of expensive cofactors. Here we show that cationic polyelectrolyte-doped hollow nanofibers, which can be fabricated via a facile coaxial electrospinning technology, provide an ideal scaffold for assembly of cofactor and multienzymes capable of synthesizing methanol from CO2 through a cascade multistep reaction involving cofactor regeneration. Cofactor and four enzymes including formate, formaldehyde, alcohol, and glutamate dehydrogenases were in situ coencapsulated inside the lumen of hollow nanofibers by involving them in the core-phase solution for coaxial electrospinning, in which cationic polyelectrolyte was predissolved. The polyelectrolyte penetrating across the shell of the hollow nanofibers enabled efficient tethering and retention of cofactor inside the lumen via ion-exchange interactions between oppositely charged polyelectrolytes and cofactor. With carbonic anhydrase assembled on the outer surface of the hollow nanofibers for accelerating hydration Of CO2, these five-enzymes-cofactor catalyst system exhibited high activity for methanol synthesis. Compared with methanol yield of only 36.17% using free enzymes and cofactor, the hollow nanofiber-supported system afforded a high value up to 103.2%, the highest reported value so far. It was believed that the linear polyelectrolytes acted as spacers to enhance the shuttling of cofactor between enzymes that were coencapsulated within near vicinity, thus improving the efficiency of the system. The immobilized system showed good stability in reusing. About 80% of its original productivity was retained after 10 reusing cycles, with a cofactor-based cumulative methanol yield reached 940.5%.

WOS标题词Science & Technology ; Physical Sciences ; Technology
类目[WOS]Chemistry, Multidisciplinary ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary
研究领域[WOS]Chemistry ; Science & Technology - Other Topics ; Materials Science
关键词[WOS]SITU COFACTOR REGENERATION ; GLUCOSE-DEHYDROGENASE ; EFFICIENT CONVERSION ; MEMBRANE REACTOR ; ARTIFICIAL CELLS ; BIENZYME SYSTEM ; CO2 ; REDUCTION ; ANHYDRASE ; ENZYMES
收录类别SCI
语种英语
WOS记录号WOS:000353867000129
内容类型期刊论文
源URL[http://ir.ipe.ac.cn/handle/122111/16770]  
专题过程工程研究所_生化工程国家重点实验室
作者单位1.Chinese Acad Sci, Inst Proc Engn, Natl Key Lab Biochem Engn, Beijing 100190, Peoples R China
2.Univ Minnesota, Dept Bioprod & Biosyst Engn, St Paul, MN 55108 USA
3.Univ Minnesota, Inst Biotechnol, St Paul, MN 55108 USA
推荐引用方式
GB/T 7714
Ji, Xiaoyuan,Su, Zhiguo,Wang, Ping,et al. Tethering of Nicotinamide Adenine Dinucleotide Inside Hollow Nanofibers for High-Yield Synthesis of Methanol from Carbon Dioxide Catalyzed by Coencapsulated Multienzymes[J]. ACS NANO,2015,9(4):4600-4610.
APA Ji, Xiaoyuan,Su, Zhiguo,Wang, Ping,Ma, Guanghui,&Zhang, Songping.(2015).Tethering of Nicotinamide Adenine Dinucleotide Inside Hollow Nanofibers for High-Yield Synthesis of Methanol from Carbon Dioxide Catalyzed by Coencapsulated Multienzymes.ACS NANO,9(4),4600-4610.
MLA Ji, Xiaoyuan,et al."Tethering of Nicotinamide Adenine Dinucleotide Inside Hollow Nanofibers for High-Yield Synthesis of Methanol from Carbon Dioxide Catalyzed by Coencapsulated Multienzymes".ACS NANO 9.4(2015):4600-4610.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace