A preferentially adsorbed layer on the Zn surface manipulating ion distribution for stable Zn metal anodes
Guo, Qiang4; Teri, Gele4; Mo, Weixing3; Huang, Jianhang2; Liu, Feng3; Ye, Minghui1; Fu, Dawei4
刊名ENERGY & ENVIRONMENTAL SCIENCE
2024-04-23
卷号17期号:8页码:2888-2896
ISSN号1754-5692
DOI10.1039/d4ee00986j
通讯作者Guo, Qiang(qiangguo@zjnu.edu.cn) ; Liu, Feng(liufeng@imech.ac.cn) ; Ye, Minghui(mhye@gdut.edu.cn)
英文摘要Although one of the most promising grid-scale energy storage systems, aqueous zinc metal batteries are plagued by water corrosion, interfacial side reactions and dendrite growth, which result in the increase of local pH and byproduct formation on the zinc anode, thus deteriorating the coulombic efficiency (CE) and cycle life of zinc electrodes. Herein, we propose a modulation strategy by constructing a preferentially adsorbed layer on the Zn surface and altering the solvation structure of Zn2+ to ensure uniform ion transport through introducing a bifunctional electrolyte additive, butyrolactam (BA). As demonstrated using experimental results, DFT calculations, and theoretical simulations, sustained water consumption and dendrite growth issues are efficiently resolved and highly reversible Zn plating/stripping is achieved. By virtue of this bifunctional additive, the symmetric cells deliver long-term stability for 6200 h at 0.5 mA cm-2, 3900 h at 1 mA cm-2, 2000 h at 2 mA cm-2 and 800 h at 10 mA cm-2. Even at a high current density of 80 mA cm-2, the symmetric cells present stable cycling over 1000 cycles. Compared to the baseline electrolyte, the BA-based electrolyte shows excellent zinc stripping/plating performance with an improved coulombic efficiency. The assembled Zn-V2O5 and Zn-I2 full cells show enhanced rate capability and cycling stability. The proposed synergistic modulation concept in this work might provide a promising alternative for developing stable Zn anodes. A bifunctional electrolyte additive enabling stable Zn metal anodes.
资助项目National Natural Science Foundation of China[21991141] ; National Natural Science Foundation of China ; Zhejiang Normal University
WOS关键词ELECTROLYTE
WOS研究方向Chemistry ; Energy & Fuels ; Engineering ; Environmental Sciences & Ecology
语种英语
WOS记录号WOS:001195333900001
资助机构National Natural Science Foundation of China ; National Natural Science Foundation of China ; Zhejiang Normal University
内容类型期刊论文
源URL[http://dspace.imech.ac.cn/handle/311007/94824]  
专题力学研究所_非线性力学国家重点实验室
通讯作者Guo, Qiang; Liu, Feng; Ye, Minghui
作者单位1.Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou 510006, Peoples R China
2.Zhejiang Normal Univ, Coll Chem & Mat Sci, Key Lab, Minist Educ Adv Catalysis Mat, Jinhua 321004, Peoples R China
3.Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
4.Zhejiang Normal Univ, Inst Sci & Applicat Mol Ferroelect, Key Lab, Minist Educ Adv Catalysis Mat, Jinhua 321004, Zhejiang, Peoples R China
推荐引用方式
GB/T 7714
Guo, Qiang,Teri, Gele,Mo, Weixing,et al. A preferentially adsorbed layer on the Zn surface manipulating ion distribution for stable Zn metal anodes[J]. ENERGY & ENVIRONMENTAL SCIENCE,2024,17(8):2888-2896.
APA Guo, Qiang.,Teri, Gele.,Mo, Weixing.,Huang, Jianhang.,Liu, Feng.,...&Fu, Dawei.(2024).A preferentially adsorbed layer on the Zn surface manipulating ion distribution for stable Zn metal anodes.ENERGY & ENVIRONMENTAL SCIENCE,17(8),2888-2896.
MLA Guo, Qiang,et al."A preferentially adsorbed layer on the Zn surface manipulating ion distribution for stable Zn metal anodes".ENERGY & ENVIRONMENTAL SCIENCE 17.8(2024):2888-2896.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace