CORC  > 金属研究所  > 中国科学院金属研究所
Monolayer MoSi (2) N4-x as promising electrocatalyst for hydrogen evolution reaction: A DFT prediction
Qian, Wangwang1,3; Chen, Zhe3,4; Zhang, Jinfeng2; Yin, Lichang1,2,3
刊名JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
2022-02-10
卷号99页码:215-222
关键词Hydrogen evolution reaction Electrocatalyst 2D material MoSi 2 N 4 Surface nitrogen vacancy
ISSN号1005-0302
DOI10.1016/j.jmst.2021.06.004
通讯作者Zhang, Jinfeng(jfzhang@chnu.edu.cn) ; Yin, Lichang(lcyin@imr.ac.cn)
英文摘要The density functional theory (DFT) calculations have been performed to investigate the catalytic properties of monolayer MoSi 2 N 4 for hydrogen evolution reaction (HER). The DFT results show that similar to the majority of other two-dimensional (2D) materials, the pristine MoSi 2 N 4 is inert for HER due to its weak affinity toward hydrogen, while monolayer MoSi 2 N 4- x ( x = 0-0.25) exhibits the highly desirable HER catalytic activities by introducing surface nitrogen vacancy (NV). The predicted HER overpotential (0-60 mV) of monolayer MoSi 2 N 4- x is lower than that (90 mV) of noble metal Pt, when the concentration of surface NV is lower than 5.6%. Electronic structure calculations show that the spin-polarized states appear around the Fermi level after introducing surface NV, thus making the surface NV on 2D MoSi 2 N 4 a quite suitable site for HER. Moreover, the HER activity of MoSi 2 N 4- x is highly dependent on the surface NV concentration, which can be further related to the center of Si-3p band. Our results demonstrate that the newly discovered 2D MoSi 2 N 4 can be served as a promising electrocatalyst for HER via appropriate defect engineering. (c) 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
资助项目National Natural Science Founda-tion of China[51972312] ; National Natural Science Founda-tion of China[51472249]
WOS研究方向Materials Science ; Metallurgy & Metallurgical Engineering
语种英语
出版者JOURNAL MATER SCI TECHNOL
WOS记录号WOS:000750043000006
资助机构National Natural Science Founda-tion of China
内容类型期刊论文
源URL[http://ir.imr.ac.cn/handle/321006/173576]  
专题金属研究所_中国科学院金属研究所
通讯作者Zhang, Jinfeng; Yin, Lichang
作者单位1.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
2.Huaibei Normal Univ, Dept Phys & Elect Informat, Huaibei 235000, Peoples R China
3.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
4.Westlake Univ, Ctr Artificial Photosynth Solar Fuels, Sch Sci, Hangzhou 310024, Peoples R China
推荐引用方式
GB/T 7714
Qian, Wangwang,Chen, Zhe,Zhang, Jinfeng,et al. Monolayer MoSi (2) N4-x as promising electrocatalyst for hydrogen evolution reaction: A DFT prediction[J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,2022,99:215-222.
APA Qian, Wangwang,Chen, Zhe,Zhang, Jinfeng,&Yin, Lichang.(2022).Monolayer MoSi (2) N4-x as promising electrocatalyst for hydrogen evolution reaction: A DFT prediction.JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,99,215-222.
MLA Qian, Wangwang,et al."Monolayer MoSi (2) N4-x as promising electrocatalyst for hydrogen evolution reaction: A DFT prediction".JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 99(2022):215-222.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace