CORC  > 过程工程研究所  > 中国科学院过程工程研究所
题名功能性介孔二氧化硅制备及其吸附低浓度恶臭气体性能研究
作者彭胜攀
答辩日期2019-07-01
文献子类博士
授予单位中国科学院大学
导师陈运法
关键词恶臭气体,低浓度,介孔二氧化硅,功能化,吸附剂
学位专业材料学
英文摘要

恶臭气体不仅有挥发性有机物(Volatile Organic Compounds, VOCs)污染的一般特性,还具有被人嗅觉感知的特殊性。恶臭气体的嗅阈值极低,当浓度体积分数为10-9甚至10-12时,仍能产生强烈令人不愉悦的味道。目前,现行《恶臭污染物排放标准》中,规定的8种恶臭气体排放标准远少于已知的4000多种(其中常见恶臭气体有十几种,随着社会发展在不断增多),且这8种恶臭气体排放浓度高于其嗅阈值1到3个数量级,远达不到根除异味目的。此外,低浓度恶臭气体(体积分数低于10×10-6)处理技术很少被关注,却是解决恶臭污染问题的重点和难点。吸附处理技术是应用于环境治理的主要方法之一。介孔二氧化硅不但具有较高的比表面积、孔结构可调、孔容量大等特点,而且二氧化硅物化稳定性较好,介孔孔道界面丰富的硅羟基利于进行功能化修饰。这使得介孔二氧化硅成为处理种类繁多、物化性质各异恶臭气体的较好选择。本论文以正硅酸乙酯(TEOS)为硅源,十六烷基三甲基溴化铵(CTAB)和聚乙二醇(PEG2000)为模板剂,利用溶胶-凝胶法在常温下制备高比表面积介孔二氧化硅,引入硅烷偶联剂(SCA)和金属盐对其进行功能化。考察了介孔二氧化硅对低浓度恶臭气体正丁醛(n-C4H8O)和甲硫醇(CH3SH)的吸附性能。主要研究内容和结果如下:(1)探索了反应温度(T),氨水用量(CNH3),反应时间(tgel),乙酸乙酯用量(CEtOAc)对介孔二氧化硅纳米颗粒(MSN)形貌结构的影响。通过扫描电子显微镜(SEM),透射电子显微镜(TEM),X射线衍射分析(XRD)和比表面分析(BET)方法对样品进行表征,结果表明当模板剂为CTAB不变时,材料的比表面积保持在948 m2·g-1 ~ 1305 m2·g-1之间,孔容量保持在0.73 mL·g-1 ~ 2.11 mL·g-1之间。研究发现这四个因素对介孔有序度(Ocrystal)影响较小,而孔径(Dpore)和CNH3呈负相关,与T,tgel和CEtOAc呈正相关。最终确定在T=25 °C,CNH3=5 mL,tgel=24 h,CEtOAc=1.32 mL条件下,可制备出比表面积和孔容量高,介孔有序度好,颗粒较均一的介孔二氧化硅,增强传质和扩散用于气体吸附。(2)有机功能化介孔二氧化硅吸附正丁醛性能研究。结合上述研究结果,采用共缩合法探索了SCA作为硅源前驱体对MSN的形貌结构及表面性能的影响。在此基础上,定向设计了氨基化介孔二氧化硅用于吸附低浓度正丁醛,实现了对介孔二氧化硅官能团种类和数量的精确控制,并且避免了嫁接法导致的孔道堵塞。结果表明,在空速为180,000 mL·g-1·h-1时,氮(N)含量为6.35 mol.%的MSN仍能够维持比表面积和孔容量在910.75 m2·g-1和0.86 mL·g-1,且保持完全吸附5 ppm的正丁醛的状态约1200 min,吸附容量为62.92 mg 正丁醛/g吸附剂。相比于空白样品,效果得到显著提高(吸附时间200 min,吸附容量9.72 mg 正丁醛/g吸附剂)。(3)研究了不同金属离子和不同阴离子对金属掺杂介孔二氧化硅分子筛(Me-MSN)的形貌和介孔结构的影响及其吸附正丁醛的性能。研究发现,金属离子会影响胶束的长径比来影响颗粒的形貌,形成棒状或者球形,同时金属离子会改变硅源前驱体的凝胶-溶胶过程改变颗粒表面粗糙度以及孔径大小。阴离子对材料的影响不明显。通过正丁醛吸附实验可知,不同金属元素掺杂样品对吸附气体具有一定的选择性,在空速180,000 mL·g-1·h-1下,1Fe-N-MSN在干态下吸附正丁醛的效果最好,可维持100%吸附精度500 min。1Ni-N-MSN吸附正丁醛的抗湿性能最好,相比于其它吸附剂,可维持80%以上吸附精度约1800 min,是其它样品的20~50倍。确定了吸附正丁醛的吸附位点为Me-O-Si结构。通过原位漫反射分析发现,水分子与Ni-O-Si中的Ni3+形成络合离子后仍保持可吸附正丁醛的性能。(4)验证了Me-O-Si结构作为恶臭气体的吸附位点具有选择性和抗湿性。通过调整模板剂为廉价的PEG 2000并调节反应pH值为酸性,得到了比表面积在550 m2·g-1以上,有丰富的非封闭式孔道结构的铜掺杂介孔氧化硅。分析发现,存在于二氧化硅中的CuO纳米颗粒和铜化合物(Si-O-Cu)在CH3SH去除中均起重要作用。由此推测,水分子使CuO纳米粒子表面上的铜原子和Si-O-Cu基团中的铜原子变成水合络合物,这对于捕获具有空Cu-3d轨道的CH3SH更有效。与介孔二氧化硅界面结合的Cu元素更倾向于形成类似于[Cu(H2O)62+]的络合态——这是与甲硫醇发生吸附的主要位点,而CuO颗粒在水分子作用下,倾向于形成类似于[Cu(H2O)42+]的络合态或难以形成络合离子而弱化了Cu元素与巯基的螯合作用。Cu(Ⅱ)分布在二氧化硅介孔壁上形成高效的吸附位点(化学吸附),在水分子作用下,吸附穿透时间进一步延长,表明制备的吸附材料的性能大大提高。此外,高温再生吸附剂的性能不会衰减,展现了极好的循环稳定性和热稳定性。最终,改进的制备方法,降低了材料成本、提高了抗湿性能和重复利用性能,并将材料制备从mg级别提高到几十克级别。;Not only does odor have characteristics of volatile organic compounds (VOCs) pollution, but also the specificity of human olfactory perception. The odor threshold of malodorous gases is extremely low, and when the concentration volume fraction is 10-9 or even 10-12, a strong unpleasant taste can still be produced. At present, existed emission standards of 8 odorous gases are higher 1 to 3 orders of magnitude than the olfactory threshold, far less than the purpose of eradicating odor. Except that, around 4,000 types of odorous gases have been found (including over 10 common odorous gases). In addition, the treatment technology of low-concentration malodorous gas (volume fraction less than 10×10-6) is rarely paid attention, though it is the key and obstacle to solve the problem of malodorous pollution. Adsorption treatment technology is one of the methods applied to environmental management. Mesoporous silica not only has high specific surface area, adjustable pore structure, large pore volume, etc., but also has good physicochemical stability. The silanic hydroxyl groups in mesoporous pore interface facilitates functional modification, which ensures that can handl a wide variety of malodorous gases with various physicochemical properties.In this paper, tetraethyl orthosilicate (TEOS) was used as the silicon source, cetyltrimethylammonium bromide (CTAB) and polyethylene glycol (PEG 2000) as template to prepare mesoporous silica nanoparticles (MSN) by sol-gel method at room temperature. The high specific surface area MSN was functionalized by introduction of silane coupling agents (SCA) or metal salts. The adsorption properties of mesoporous silica on low concentrations of malodorous gases n-butyraldehyde (n-C4H8O) and methyl mercaptan (CH3SH) were investigated. The main research contents and results are as follows:(1) The effects of reaction temperature (T), amount of ammonia (CNH3), reaction time (tgel) and amount of ethyl acetate (CEtOAc) on the morphology of MSN were investigated. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction analysis (XRD) and specific surface analysis (BET). The results show that the specific surface area of the material is maintained between 948 m2·g-1 and 1305 m2·g-1, the pore volume is maintained between 0.73 mL·g-1 and 2.11 mL·g-1. The study found that these four factors had little effect on mesoporosity (Ocrystal), while the pore size (Dpore) was negatively correlated with CNH3 and positively correlated with T, tgel and CEtOAc. It was finally determined that at T=25 °C, CNH3=5 mL, tgel=24 h, CEtOAc=1.32 mL, the specific surface area and pore volume were high, the mesopores were well ordered, the particles were more uniform, which are good for gas adsorbed.(2) When different silane coupling agents are selected as the silicon source precursor, the leaving group of the silane coupling agent causes the difference in the decomposition-condensation rate of the silicon source precursor to affect the morphology of the mesoporous silica. The Ocrystal also changes due to the difference in decomposition-condensation rate; the functional group affects the size of the micelle and thus affects the morphology of the resulting particles. The pore blocking phenomenon in the grafting method does not occur over the experimental sample, and the amount of the functional group can be precisely regulated. The amino-functionalized mesoporous silica A-MSN-3 prepared by the co-condensation method can maintain the state of completely adsorbing 5 ppm of n-butyraldehyde at a high space velocity of 180,000 mL·g-1·h-1 for about 1200 minutes. The capacity is 62.92 mg n-butyraldehyde g-1 adsorbent.(3) The effects of different metal ions and anions on the morphology and mesoporous structure of metal-doped mesoporous silica molecular sieves (Me-MSN) and their adsorption properties were investigated. Metal ions affect the aspect ratio of micelles to form MSN with rods or spheres. Also metal ions change the gel-sol process of the silicon source precursors to change the surface roughness and pore size of the particles. The effect of anions on the material is not obvious. It can be seen from the n-butyraldehyde adsorption experiment that different metal element doping samples have certain selectivity to the adsorbed gas. At a space velocity of 180,000 mL·g-1·h-1, 1Fe-N-MSN adsorbs n-butyraldehyde in the dried condition, which can maintain 100% adsorption accuracy for 500 minutes. As 1Ni-N-MSN, adsorption of n-butyraldehyde has the best moisture resistance, it can maintain adsorption accuracy of more than 80% for about 1800 minutes, which is 20 to 50 times that of other samples. The adsorption site for adsorbing n-butyraldehyde was determined to be a Me-O-Si structure. Through in-situ DRIFT (Diffuse Reflectance Infrared Fourier Transform), it was found that the water molecules retained the adsorption of n-butyraldehyde after forming complex ions with Ni3+ in Ni-O-Si.(4) It was verified that the Me-O-Si structure has selectivity and moisture resistance as a site of adsorption of the malodorous gas. By adjusting the templating agent to inexpensive PEG 2000 and adjusting the pH of the reaction to be acidic, a copper-doped mesoporous silica having a specific non-closed pore structure with a specific surface area over 550 m2·g-1 or more was obtained. It was found that CuO nanoparticles and copper compounds (Si-O-Cu) present in silica play an important role in the removal of CH3SH. It is presumed that the water molecules cause the copper atoms on the surface of the CuO nanoparticles and the copper atoms in the Si-O-Cu group to become hydrated complexes, which is more effective for capturing CH3SH having an empty Cu-3d orbital. The Cu element bonded to the mesoporous silica interface tends to form a complex state similar to [Cu(H2O)62+] — this is the main adsorption site for adsorption with methyl mercaptan, while CuO particles are in water. Under the action of molecules, it tends to form a complex state similar to [Cu(H2O)42+] or it is difficult to form complex ions to weaken the chelation of Cu and sulfhydryl groups. Cu(II) is distributed on the mesoporous wall of silica to form a highly efficient adsorption site (chemical adsorption). Under the action of water molecules, the adsorption breakthrough time is further extended, indicating that the performance of the prepared adsorbent material is greatly improved. In addition, the performance of the high-temperature regenerated adsorbent does not decay, exhibiting excellent cycle stability and thermal stability. Finally, the improved preparation method reduces material costs, improves moisture resistance and recyclability, and increases material preparation from milligrams to tens of grams. 

语种中文
内容类型学位论文
源URL[http://ir.ipe.ac.cn/handle/122111/40649]  
专题中国科学院过程工程研究所
推荐引用方式
GB/T 7714
彭胜攀. 功能性介孔二氧化硅制备及其吸附低浓度恶臭气体性能研究[D]. 中国科学院大学. 2019.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace