Multifunctional alkalophilic alpha-amylase with diverse raw seaweed degrading activities
Gu, Xiaoqian1,2,5; Fu, Liping2; Pan, Aihong2; Gui, Yuanyuan4; Zhang, Qian2; Li, Jiang1,2,3,5
刊名AMB EXPRESS
2021-10-20
卷号11期号:1页码:10
关键词Metagenomic alpha-amylase Multifunctional enzyme Enzymatic digestion
ISSN号2191-0855
DOI10.1186/s13568-021-01300-x
通讯作者Li, Jiang(lijiang@fio.org.cn)
英文摘要Uncultured microbes are an important resource for the discovery of novel enzymes. In this study, an amylase gene (amy2587) that codes a protein with 587 amino acids (Amy2587) was obtained from the metagenomic library of macroalgae-associated bacteria. Recombinant Amy2587 was expressed in Escherichia coli BL21 (DE3) and was found to simultaneously possess alpha-amylase, agarase, carrageenase, cellulase, and alginate lyase activities. Moreover, recombinant Amy2587 showed high thermostability and alkali resistance which are important characteristics for industrial application. To investigate the multifunctional mechanism of Amy2587, three motifs (functional domains) in the Amy2587 sequence were deleted to generate three truncated Amy2587 variants. The results showed that, even though these functional domains affected the multiple substrates degrading activity of Amy2587, they did not wholly explain its multifunctional characteristics. To apply the multifunctional activity of Amy2587, three seaweed substrates (Grateloupia filicina, Chondrus ocellatus, and Scagassum) were digested using Amy2587. After 2 h, 6 h, and 24 h of digestion, 121.2 +/- 4 mu g/ml, 134.8 +/- 6 mu g/ml, and 70.3 +/- 3.5 mu g/ml of reducing sugars were released, respectively. These results show that Amy2587 directly and effectively degraded three kinds of raw seaweeds. This finding provides a theoretical basis for one-step enzymatic digestion of raw seaweeds to obtain seaweed oligosaccharides.
资助项目Key Research and Development Program of Shandong Province, China[2018GHY115013] ; Impact and Response of Antarctic Seas to Climate Change[RFSOCC2020-2022]
WOS研究方向Biotechnology & Applied Microbiology
语种英语
出版者SPRINGER
WOS记录号WOS:000709340500001
内容类型期刊论文
源URL[http://ir.qdio.ac.cn/handle/337002/176764]  
专题海洋研究所_实验海洋生物学重点实验室
通讯作者Li, Jiang
作者单位1.Chinese Acad Sci, Inst Oceanol, Ctr Ocean Mega Sci, Shandong Prov Key Lab Expt Marine Biol, Qingdao 266071, Peoples R China
2.Minist Nat Resources, Inst Oceanog 1, Key Lab Ecol Environm Sci & Technol, Qingdao 266061, Peoples R China
3.SOA, Inst Oceanog 1, Key Lab Ecol Environm Sci & Technol, Qingdao 266061, Peoples R China
4.Qingdao Univ, Coll Environm Sci & Engn, Qingdao 266071, Peoples R China
5.Chinese Acad Sci, Qingdao 266071, Peoples R China
推荐引用方式
GB/T 7714
Gu, Xiaoqian,Fu, Liping,Pan, Aihong,et al. Multifunctional alkalophilic alpha-amylase with diverse raw seaweed degrading activities[J]. AMB EXPRESS,2021,11(1):10.
APA Gu, Xiaoqian,Fu, Liping,Pan, Aihong,Gui, Yuanyuan,Zhang, Qian,&Li, Jiang.(2021).Multifunctional alkalophilic alpha-amylase with diverse raw seaweed degrading activities.AMB EXPRESS,11(1),10.
MLA Gu, Xiaoqian,et al."Multifunctional alkalophilic alpha-amylase with diverse raw seaweed degrading activities".AMB EXPRESS 11.1(2021):10.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace