Characteristics of PM2.5 mass concentrations and chemical species in urban and background areas of China: emerging results from the CARE-China network
Hu, Bo4; Wang, Gehui6; Wang, Lili4; Cong, Zhiyuan3; Xu, Honghui1; Zhang, Guohua7; Bi, Xinhui7; Xin, Jinyuan4; Wang, Yuesi4,5; Sun, Yang4
刊名ATMOSPHERIC CHEMISTRY AND PHYSICS
2018-06-22
卷号18期号:12页码:8849-8871
DOI10.5194/acp-18-8849-2018
文献子类Article
英文摘要The "Campaign on Atmospheric Aerosol Research" network of China (CARE-China) is a long-term project for the study of the spatio-temporal distributions of physical aerosol characteristics as well as the chemical components and optical properties of aerosols over China. This study presents the first long-term data sets from this project, including 3 years of observations of online PM2.5 mass concentrations (2012-2014) and 1 year of observations of PM2.5 compositions (2012-2013) from the CARE-China network. The average PM2.5 concentration at 20 urban sites is 73.2 mu g m(-3) (16.8-126.9 mu g m(-3), which was 3 times higher than the average value from the 12 background sites (11.2-46.5 mu g m(-3). The PM2.5 concentrations are generally higher in east-central China than in the other parts of the country due to their relatively large particulate matter (PM) emissions and the unfavourable meteorological conditions for pollution dispersion. A distinct seasonal variability in PM2.5 is observed, with highs in the winter and lows during the summer at urban sites. Inconsistent seasonal trends were observed at the background sites. Bi-modal and unimodal diurnal variation patterns were identified at both urban and background sites. The chemical compositions of PM2.5 were analysed at six paired urban and background sites located within the most polluted urban agglomerations - North China Plain (NCP), Yangtze River delta (YRD), Pearl River delta (PRD), North-east China region (NECR), South-west China region (SWCR) - and the cleanest region of China - the Tibetan Autonomous Region (TAR). The major PM2.5 constituents across all the urban sites are organic matter (OM, 26.0 %), SO42- (17.7 %), mineral dust (11.8 %), NO3- (9.8 %), NH4+(6.6 %), elemental carbon (EC) (6.0 %), Cl- (1.2 %) at 45% RH and unaccounted matter (20.7 %). Similar chemical compositions of PM2.5 were observed at background sites but were associated with higher fractions of OM (33.2 %) and lower fractions of NO3- (8.6 %) and EC (4.1 %). Significant variations of the chemical species were observed among the sites. At the urban sites, the OM ranged from 12.6 mu g m(-3) (Lhasa) to 23.3 mu g m(-3) (Shenyang), the SO42- ranged from 0.8 mu g m(-3) (Lhasa) to 19.7 mu g m(-3) (Chongqing), the NO3- ranged from 0.5 mu g m(-3) (Lhasa) to 11.9 mu g m(-3) (Shanghai) and the EC ranged from 1.4 mu g m(-3) (Lhasa) to 7.1 mu g m(-3) (Guangzhou). The PM2.5 chemical species at the background sites exhibited larger spatial heterogeneities than those at urban sites, suggesting different contributions from regional anthropogenic or natural emissions and from long-range transport to background areas. Notable seasonal variations of PM2.5-polluted days were observed, especially for the megacities in east-central China, resulting in frequent heavy pollution episodes occurring during the winter. The evolution of the PM2.5 chemical compositions on polluted days was consistent for the urban and nearby background sites, where the sum of sulfate, nitrate and ammonia typically constituted much higher fractions (31-57 %) of PM2.5
WOS关键词YANGTZE-RIVER DELTA ; FINE PARTICULATE MATTER ; SECONDARY INORGANIC AEROSOLS ; SOURCE APPORTIONMENT ; AIR-POLLUTION ; NORTHERN CHINA ; HAZE POLLUTION ; SOUTH CHINA ; CARBONACEOUS AEROSOL ; TEMPORAL VARIATIONS
WOS研究方向Meteorology & Atmospheric Sciences
语种英语
WOS记录号WOS:000435954400004
内容类型期刊论文
源URL[http://ir.ieecas.cn/handle/361006/5101]  
专题地球环境研究所_黄土与第四纪地质国家重点实验室(2010~)
通讯作者Liu, Zirui
作者单位1.Zhejiang Meteorol Sci Inst, Hangzhou 310017, Zhejiang, Peoples R China
2.Univ Nottingham Ningbo China, Int Doctoral Innovat Ctr, Ningbo 315100, Zhejiang, Peoples R China
3.Chinese Acad Sci, Inst Tibetan Plateau Res, Key Lab Tibetan Environm Changes & Land Surface P, Beijing 100101, Peoples R China
4.Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Atmospher Boundary Layer Phys & Atm, Beijing 100029, Peoples R China
5.Chinese Acad Sci, Inst Urban Environm, Ctr Excellence Reg Atmospher Environm, Xiamen 361021, Peoples R China
6.Chinese Acad Sci, Inst Earth Environm, State Key Lab Loess & Quaternary Geol, Xian 710075, Shaanxi, Peoples R China
7.Chinese Acad Sci, Guangzhou Inst Geochem, State Key Lab Organ Geochem, Guangzhou 510640, Guangdong, Peoples R China
推荐引用方式
GB/T 7714
Hu, Bo,Wang, Gehui,Wang, Lili,et al. Characteristics of PM2.5 mass concentrations and chemical species in urban and background areas of China: emerging results from the CARE-China network[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS,2018,18(12):8849-8871.
APA Hu, Bo.,Wang, Gehui.,Wang, Lili.,Cong, Zhiyuan.,Xu, Honghui.,...&He, Jun.(2018).Characteristics of PM2.5 mass concentrations and chemical species in urban and background areas of China: emerging results from the CARE-China network.ATMOSPHERIC CHEMISTRY AND PHYSICS,18(12),8849-8871.
MLA Hu, Bo,et al."Characteristics of PM2.5 mass concentrations and chemical species in urban and background areas of China: emerging results from the CARE-China network".ATMOSPHERIC CHEMISTRY AND PHYSICS 18.12(2018):8849-8871.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace